
GUI architecture for scientific workflow
spaghetti-free, lazy-responsive, with capture & replay

Joachim Wuttke

Forschungszentrum Jülich GmbH, JCNS-MLZ Garching

Google image search for “model view” 1

https://blogs.msdn.microsoft.com/erwinvandervalk 2

https://blogs.msdn.microsoft.com/erwinvandervalk

Qt5 model/view classes

view is based on

QAbstractItemView
- QListView
- QTableView
- QTreeView

model inherits from

QAbstractItemModel
- QAbstractListModel
- QAbstractProxyModel
- QAbstractTableModel

3

by Juanpe Bolivar (CppCon 2017) 4

by Juanpe Bolivar (CppCon 2017) 5

by Juanpe Bolivar (CppCon 2017) 6

by Juanpe Bolivar (CppCon 2017) 7

VIEW VIEW

VIEWMODEL VIEWMODEL

DATA

8

core

gui

VIEW VIEW

VIEWMODEL VIEWMODEL

DATA

9

core

gui

services

VIEW VIEW

VIEWMODEL VIEWMODEL

LOGGER PARAMETER WRAPPERS

DATA

10

core

gui

services

VIEW

VIEWMODEL

LOGGER PARAMETER WRAPPERS

DATA

Python API

user script

11

generated by Doxygen 12

generated by Doxygen 13

generated by Doxygen 14

GUI:

qApp

gMainWindow settings

widgets menu

triggers, toggles

= global variable

Core:

gSession

settings data

raw reduced

metadata

images

parameters

results

15

• prefer plain global variables over equivalent singletons

• prefer one global variable gSession over function calls like

f(session.Data, session.Parameters);

which calls

g(datafiles[iFile], parameterX , parameterZ);

which calls

h(datafile.metadata.A, parameterZ);

16

How to keep this up to date?

17

Signalling spaghetti (GUI ↔ Core) has its root in efforts

• to restrict Core recomputation to data that have changed,
• to restrict GUI redrawing to Widgets that have changed.

Both are premature optimizations.

18

Signalling spaghetti (GUI ↔ Core) has its root in efforts

• to restrict Core recomputation to data that have changed,
• to restrict GUI redrawing to Widgets that have changed.

Both are premature optimizations.

They do not even preclude duplication of Core computations.

18

application

view 1 view 2

data 1 data 2

data 3 data 4

parameter

19

application

view 1 view 2

data 1 data 2

data 3 data 4

parameter

20

application

view 1 view 2

data 1 data 2

data 3 data 4

parameter

declare invalid

request refresh

lazy evaluate

21

GUI:

qApp

gMainWindow settings

widgets menu

triggers, toggles

request recompute

Core:

gSession

settings data

raw reduced

metadata

images

parameters

results

request redisplay

22

Bonus section: capture & replay

Logging

Why?

• to debug,
• to profile,
• to document provenance,

and to replay

• tests during development,
• functional tests,
• user sessions, especially upon bug reports.

Also related:

• Undo/Redo.

23

Logging

How?

By recording

• keyboard and mouse events,
• interrupts,
• user actions at widget level,
• GUI-to-core calls.

24

Logging

How?

By recording

• keyboard and mouse events,
• interrupts,
• user actions at widget level,
• GUI-to-core calls.

24

application

control

widgets

command

interpreter

core command

stack

undo/redo

log file text

editor

test suite

test case
test case

test case
test case

test case
test case

GUI

action

textual

command

 user tester

25

QAction

QCheckButton

QSpinBox

QComboBox

QTabWidget

QDoubleSpinBox

QLineEdit

QDialog

QFileDialog

QcrTrigger

QcrToggle

QcrCheckButton

QcrSpinBox

QcrComboBox

QcrTabWidget

QcrDoubleSpinBox

QcrLineEdit

QcrModelessDialog

QcrModalDialog

QcrFileDialog

QcrControl<bool>

QcrControl<int>

QcrControl<double>

QcrControl<QString>

QcrModal

QcrMixin

jugit.fz-juelich.de:mlz/libQCR 26

jugit.fz-juelich.de:mlz/libQCR

