
GUI architecture for scientific workflow
spaghetti-free, lazy-responsive, with capture & replay

Joachim Wuttke

Forschungszentrum Jülich GmbH, JCNS-MLZ Garching



Google image search for “model view” 1



https://blogs.msdn.microsoft.com/erwinvandervalk 2

https://blogs.msdn.microsoft.com/erwinvandervalk


Qt5 model/view classes

view is based on

QAbstractItemView
- QListView
- QTableView
- QTreeView

model inherits from

QAbstractItemModel
- QAbstractListModel
- QAbstractProxyModel
- QAbstractTableModel
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GUI:

qApp

gMainWindow settings

widgets menu

triggers, toggles

=  global  variable

Core:

gSession

settings data

raw reduced

metadata

images

parameters

results
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• prefer plain global variables over equivalent singletons

• prefer one global variable gSession over function calls like

f(session.Data, session.Parameters);

which calls

g(datafiles[iFile], parameterX , parameterZ);

which calls

h(datafile.metadata.A, parameterZ);
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How to keep this up to date?
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Signalling spaghetti (GUI ↔ Core) has its root in efforts

• to restrict Core recomputation to data that have changed,
• to restrict GUI redrawing to Widgets that have changed.

Both are premature optimizations.
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Signalling spaghetti (GUI ↔ Core) has its root in efforts

• to restrict Core recomputation to data that have changed,
• to restrict GUI redrawing to Widgets that have changed.

Both are premature optimizations.

They do not even preclude duplication of Core computations.

18



application

view 1 view 2

data 1 data 2

data 3 data 4

parameter

19



application

view 1 view 2

data 1 data 2

data 3 data 4

parameter

20



application
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GUI:

qApp

gMainWindow settings

widgets menu

triggers, toggles

request recompute

Core:

gSession

settings data

raw reduced

metadata

images

parameters

results

request redisplay
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Bonus section: capture & replay



Logging

Why?

• to debug,
• to profile,
• to document provenance,

and to replay

• tests during development,
• functional tests,
• user sessions, especially upon bug reports.

Also related:

• Undo/Redo.
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Logging

How?

By recording

• keyboard and mouse events,
• interrupts,
• user actions at widget level,
• GUI-to-core calls.
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application

control

widgets

command

interpreter

core command

stack

undo/redo

log file text

editor

test suite

test case
test case

test case
test case

test case
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GUI

action

textual

command

  user tester
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QAction

QCheckButton

QSpinBox

QComboBox

QTabWidget

QDoubleSpinBox

QLineEdit

QDialog

QFileDialog

QcrTrigger

QcrToggle

QcrCheckButton

QcrSpinBox

QcrComboBox

QcrTabWidget

QcrDoubleSpinBox

QcrLineEdit

QcrModelessDialog

QcrModalDialog

QcrFileDialog

QcrControl<bool>

QcrControl<int>

QcrControl<double>

QcrControl<QString>

QcrModal

QcrMixin
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