
GitLab Pipelines for Every Need

Debsankha Manik

MPI for Dynamics and Self-Organization, Göttingen

July 3, 2019

CI/CD Pipelines: Core Idea
Apply well defined operations on the codebase automatically

On each commit (or according to some fine-tuned criteria)

1 A pre-specified environment is created (typically using
docker).

2 A pre-defined set of operations are run on the codebase.
3 Operations may depend on each other, be chronologically

ordered, asked to run on parallel . . .

1 / 12

CI/CD Pipelines: Core Idea
Apply well defined operations on the codebase automatically

On each commit (or according to some fine-tuned criteria)

1 A pre-specified environment is created (typically using
docker).

2 A pre-defined set of operations are run on the codebase.
3 Operations may depend on each other, be chronologically

ordered, asked to run on parallel . . .

1 / 12

CI/CD Pipelines: Core Idea
Apply well defined operations on the codebase automatically

On each commit (or according to some fine-tuned criteria)

1 A pre-specified environment is created (typically using
docker).

2 A pre-defined set of operations are run on the codebase.
3 Operations may depend on each other, be chronologically

ordered, asked to run on parallel . . .

1 / 12

CI/CD Pipelines: Core Idea
Apply well defined operations on the codebase automatically

On each commit (or according to some fine-tuned criteria)

1 A pre-specified environment is created (typically using
docker).

2 A pre-defined set of operations are run on the codebase.

3 Operations may depend on each other, be chronologically
ordered, asked to run on parallel . . .

1 / 12

CI/CD Pipelines: Core Idea
Apply well defined operations on the codebase automatically

On each commit (or according to some fine-tuned criteria)

1 A pre-specified environment is created (typically using
docker).

2 A pre-defined set of operations are run on the codebase.
3 Operations may depend on each other, be chronologically

ordered, asked to run on parallel . . .

1 / 12

Use Case 1: Automated Testing

Let’s say a codebase has a comprehensive test suite.

But new team member cannot run it.
Because some tests depend on library foo being compiled with
bar=True option.
Nobody knows whether the codebase is deployable or not.

What if we:
1. Ran our test suite on exactly defined environment on each
commit.
2. Could see which commit caused the test suite to fail.

2 / 12

Use Case 1: Automated Testing

Let’s say a codebase has a comprehensive test suite.
But new team member cannot run it.

Because some tests depend on library foo being compiled with
bar=True option.
Nobody knows whether the codebase is deployable or not.

What if we:
1. Ran our test suite on exactly defined environment on each
commit.
2. Could see which commit caused the test suite to fail.

2 / 12

Use Case 1: Automated Testing

Let’s say a codebase has a comprehensive test suite.
But new team member cannot run it.
Because some tests depend on library foo being compiled with
bar=True option.

Nobody knows whether the codebase is deployable or not.

What if we:
1. Ran our test suite on exactly defined environment on each
commit.
2. Could see which commit caused the test suite to fail.

2 / 12

Use Case 1: Automated Testing

Let’s say a codebase has a comprehensive test suite.
But new team member cannot run it.
Because some tests depend on library foo being compiled with
bar=True option.
Nobody knows whether the codebase is deployable or not.

What if we:
1. Ran our test suite on exactly defined environment on each
commit.
2. Could see which commit caused the test suite to fail.

2 / 12

Use Case 1: Automated Testing

Let’s say a codebase has a comprehensive test suite.
But new team member cannot run it.
Because some tests depend on library foo being compiled with
bar=True option.
Nobody knows whether the codebase is deployable or not.

What if we:

1. Ran our test suite on exactly defined environment on each
commit.
2. Could see which commit caused the test suite to fail.

2 / 12

Use Case 1: Automated Testing

Let’s say a codebase has a comprehensive test suite.
But new team member cannot run it.
Because some tests depend on library foo being compiled with
bar=True option.
Nobody knows whether the codebase is deployable or not.

What if we:
1. Ran our test suite on exactly defined environment on each
commit.

2. Could see which commit caused the test suite to fail.

2 / 12

Use Case 1: Automated Testing

Let’s say a codebase has a comprehensive test suite.
But new team member cannot run it.
Because some tests depend on library foo being compiled with
bar=True option.
Nobody knows whether the codebase is deployable or not.

What if we:
1. Ran our test suite on exactly defined environment on each
commit.
2. Could see which commit caused the test suite to fail.

2 / 12

We Can Have Exactly That

3 / 12

Badge screaming loudly if master is broken

4 / 12

How: Use a CI/CD Pipeline to Run the Tests

1 Choose docker image with base dependencies of your software.

2 Install additional dependencies using package manager e.g.
apt , if needed.

3 Run the test suite using whatever test runner you want.

• So long the shell gets a 0 return code on sucess and nonzero
on failure.

5 / 12

How: Use a CI/CD Pipeline to Run the Tests

1 Choose docker image with base dependencies of your software.
2 Install additional dependencies using package manager e.g.

apt , if needed.

3 Run the test suite using whatever test runner you want.

• So long the shell gets a 0 return code on sucess and nonzero
on failure.

5 / 12

How: Use a CI/CD Pipeline to Run the Tests

1 Choose docker image with base dependencies of your software.
2 Install additional dependencies using package manager e.g.

apt , if needed.
3 Run the test suite using whatever test runner you want.

• So long the shell gets a 0 return code on sucess and nonzero
on failure.

5 / 12

How: Use a CI/CD Pipeline to Run the Tests

1 Choose docker image with base dependencies of your software.
2 Install additional dependencies using package manager e.g.

apt , if needed.
3 Run the test suite using whatever test runner you want.

• So long the shell gets a 0 return code on sucess and nonzero
on failure.

5 / 12

How to Set This Up?

6 / 12

Use Case 2: Integration Tests
We had some tests that “simulates” our deployed system, i.e.

1 Installs all the componenets of our software.
2 Spins up the server.
3 Creates a few clients.
4 The clients fires a few hundred requests.
5 We check if the server was able to handle all these requests,

satisfying some predefined criteria.

Running these tests didn’t fit in the basic CI/CD paradigm:

• Takes too long to run.
• We didn’t need this to run on every commit to every branch.

We wanted a nighly run of these “integration tests” on master.

7 / 12

Use Case 2: Integration Tests
We had some tests that “simulates” our deployed system, i.e.

1 Installs all the componenets of our software.
2 Spins up the server.
3 Creates a few clients.
4 The clients fires a few hundred requests.
5 We check if the server was able to handle all these requests,

satisfying some predefined criteria.

Running these tests didn’t fit in the basic CI/CD paradigm:

• Takes too long to run.
• We didn’t need this to run on every commit to every branch.

We wanted a nighly run of these “integration tests” on master.

7 / 12

Use Case 2: Integration Tests
We had some tests that “simulates” our deployed system, i.e.

1 Installs all the componenets of our software.
2 Spins up the server.
3 Creates a few clients.
4 The clients fires a few hundred requests.
5 We check if the server was able to handle all these requests,

satisfying some predefined criteria.

Running these tests didn’t fit in the basic CI/CD paradigm:

• Takes too long to run.
• We didn’t need this to run on every commit to every branch.

We wanted a nighly run of these “integration tests” on master.
7 / 12

We Ended Up With This

8 / 12

How to Set This Up?

Specify an environment as before using docker .

Specify a new stage in the CI pipeline that is to be triggered
only on schedule, not automatically on each commit.

Generate custom badges displaying this stage passes/fails using
artifact s (more on this later).

9 / 12

How to Set This Up?

Specify an environment as before using docker .
Specify a new stage in the CI pipeline that is to be triggered
only on schedule, not automatically on each commit.

Generate custom badges displaying this stage passes/fails using
artifact s (more on this later).

9 / 12

How to Set This Up?

Specify an environment as before using docker .
Specify a new stage in the CI pipeline that is to be triggered
only on schedule, not automatically on each commit.

Generate custom badges displaying this stage passes/fails using
artifact s (more on this later).

9 / 12

How to Set This Up?

Specify an environment as before using docker .
Specify a new stage in the CI pipeline that is to be triggered
only on schedule, not automatically on each commit.

Generate custom badges displaying this stage passes/fails using
artifact s (more on this later).

9 / 12

How to Set This Up?

Specify an environment as before using docker .
Specify a new stage in the CI pipeline that is to be triggered
only on schedule, not automatically on each commit.

Generate custom badges displaying this stage passes/fails using
artifact s (more on this later).

9 / 12

Use Case 3: Writing a Paper Making This Presentation
https://gitlab.gwdg.de/dmanik/gitlab-ci-talk

10 / 12

How to Set This Up?

Use a docker image with texlive (here blang/latex)

Define a job that invokes latexmk to compile the PDF.

Use job artifacts to store the compiled PDF.

We ask GitLab to store all files matching the wildcard *.pdf .
The PDF is then accessible under the URL
<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf .

11 / 12

<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf

How to Set This Up?

Use a docker image with texlive (here blang/latex)

Define a job that invokes latexmk to compile the PDF.

Use job artifacts to store the compiled PDF.

We ask GitLab to store all files matching the wildcard *.pdf .
The PDF is then accessible under the URL
<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf .

11 / 12

<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf

How to Set This Up?

Use a docker image with texlive (here blang/latex)

Define a job that invokes latexmk to compile the PDF.

Use job artifacts to store the compiled PDF.

We ask GitLab to store all files matching the wildcard *.pdf .
The PDF is then accessible under the URL
<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf .

11 / 12

<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf

How to Set This Up?

Use a docker image with texlive (here blang/latex)

Define a job that invokes latexmk to compile the PDF.

Use job artifacts to store the compiled PDF.

We ask GitLab to store all files matching the wildcard *.pdf .
The PDF is then accessible under the URL
<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf .

11 / 12

<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf

How to Set This Up?

Use a docker image with texlive (here blang/latex)

Define a job that invokes latexmk to compile the PDF.

Use job artifacts to store the compiled PDF.

We ask GitLab to store all files matching the wildcard *.pdf .
The PDF is then accessible under the URL
<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf .

11 / 12

<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf

How to Set This Up?

Use a docker image with texlive (here blang/latex)

Define a job that invokes latexmk to compile the PDF.

Use job artifacts to store the compiled PDF.

We ask GitLab to store all files matching the wildcard *.pdf .

The PDF is then accessible under the URL
<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf .

11 / 12

<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf

How to Set This Up?

Use a docker image with texlive (here blang/latex)

Define a job that invokes latexmk to compile the PDF.

Use job artifacts to store the compiled PDF.

We ask GitLab to store all files matching the wildcard *.pdf .
The PDF is then accessible under the URL
<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf .

11 / 12

<repo_root>/-/jobs/artifacts/master/raw/talk.pdf?job=makepdf

Outlook

Multi project pipelines (build/test the full stack divided across
repositories).
Automatically run test suite on merge requests.
• No need to waste time reviewing a MR if the test suite do not

pass.
Need to download large amounts of data for tests to run: use
cache , maybe docker volume s?
Skipping the pipeline on certain commits (except keyword in CI
config).
• e.g. changing the README .

Publish your package to PyPi, deploy to staging/production.
Reproducible papers?

12 / 12

Outlook

Multi project pipelines (build/test the full stack divided across
repositories).

Automatically run test suite on merge requests.
• No need to waste time reviewing a MR if the test suite do not

pass.
Need to download large amounts of data for tests to run: use
cache , maybe docker volume s?
Skipping the pipeline on certain commits (except keyword in CI
config).
• e.g. changing the README .

Publish your package to PyPi, deploy to staging/production.
Reproducible papers?

12 / 12

Outlook

Multi project pipelines (build/test the full stack divided across
repositories).
Automatically run test suite on merge requests.
• No need to waste time reviewing a MR if the test suite do not

pass.

Need to download large amounts of data for tests to run: use
cache , maybe docker volume s?
Skipping the pipeline on certain commits (except keyword in CI
config).
• e.g. changing the README .

Publish your package to PyPi, deploy to staging/production.
Reproducible papers?

12 / 12

Outlook

Multi project pipelines (build/test the full stack divided across
repositories).
Automatically run test suite on merge requests.
• No need to waste time reviewing a MR if the test suite do not

pass.
Need to download large amounts of data for tests to run: use
cache , maybe docker volume s?

Skipping the pipeline on certain commits (except keyword in CI
config).
• e.g. changing the README .

Publish your package to PyPi, deploy to staging/production.
Reproducible papers?

12 / 12

Outlook

Multi project pipelines (build/test the full stack divided across
repositories).
Automatically run test suite on merge requests.
• No need to waste time reviewing a MR if the test suite do not

pass.
Need to download large amounts of data for tests to run: use
cache , maybe docker volume s?
Skipping the pipeline on certain commits (except keyword in CI
config).
• e.g. changing the README .

Publish your package to PyPi, deploy to staging/production.
Reproducible papers?

12 / 12

Outlook

Multi project pipelines (build/test the full stack divided across
repositories).
Automatically run test suite on merge requests.
• No need to waste time reviewing a MR if the test suite do not

pass.
Need to download large amounts of data for tests to run: use
cache , maybe docker volume s?
Skipping the pipeline on certain commits (except keyword in CI
config).
• e.g. changing the README .

Publish your package to PyPi, deploy to staging/production.

Reproducible papers?

12 / 12

Outlook

Multi project pipelines (build/test the full stack divided across
repositories).
Automatically run test suite on merge requests.
• No need to waste time reviewing a MR if the test suite do not

pass.
Need to download large amounts of data for tests to run: use
cache , maybe docker volume s?
Skipping the pipeline on certain commits (except keyword in CI
config).
• e.g. changing the README .

Publish your package to PyPi, deploy to staging/production.
Reproducible papers?

12 / 12

	Introduction

