
“ediarum - from bottom-up to generic programming”

by Martin Fechner, Stefan Dumont

This lecture deals with a software project, which was developed in the context of scholarly
editions. Scholarly editions make historical sources such as letters, diaries, etc. from
archives accessible to researchers. For this purpose, the sources are transcribed and
commented. Here at the Berlin-Brandenburg Academy of Sciences and Humanities there are
editions on the philosophers Leibniz and Kant and on other famous personalities such as
Karl Marx or Alexander von Humboldt.

Our software project now establishes a digital workflow for the scholarly editions. This is
known as a digital scholarly edition (DSE). Digital scholarly editions follow a genuine digital
paradigm.1 This means that digital is thought not only as a tool, but as an independent
method. Digital editions are usually encoded in XML format according to the guidelines of
the Text Encoding Initiative (TEI). The aim is to make the edited historical sources
comprehensively available for subsequent use and to be able to link them with further
information and other databases. A further goal is the single-source principle, i.e. to be able
to generate everything else from a data source, in this case XML documents. Both web
publications and print publications are relevant presentation formats for the scholarly
editions.

Our initial situation in 2011/2012 was as follows: It was clear that we needed a new
workflow for many projects, as the previous one no longer met the requirements for a
digital scholarly edition. The edition project Schleiermacher in Berlin (Friedrich
Schleiermacher was a famous Berlin theologian of the 19th century), this edition project
offered the opportunity to implement a new workflow. At that time, however, there was no
software that would have met the requirements of the edition projects at the BBAW for the
creation and publication of digital scholarly editions. Furthermore, we had only few
resources that we could use to create a software solution. Consequently, the decision was
made not to try a completely new development, but to use the resources carefully and to
use existing software and further develop it where necessary. In our case these were the
XML database eXistdb, the XML editing tool Oxygen XML Author and the typesetting engine
ConTeXt. This approach ultimately led to success. We were able to create a software
solution that we now call ediarum. This solution still supports the workflow of the project
today, relies on a sustainable data format and makes all desired forms of publication (on the
web and in print) possible.

This successful digitisation project was characterised by the following key points:

 bottom-up approach, i.e.

 concrete development for an existing project

1 Patrick Sahle: Digitale Editionsformen. Teil II: Befunde, Theorie und Methodik (=Schriften
des Instituts für Dokumentologie und Editorik 8). Norderstedt 2013, p. 149.

 we had to provide more resources for development than was usual for previous
projects. We had about two developers with one full time equivalent (FTE) over
a period of about half a year to a full year. (For comparison: previously we
planned only with periods of a few weeks or months for small projects).

 close communication with the research project / edition project was necessary.

 we made use of existing, stable software with good support.

 we developed adaptations and extensions of this software by own solutions.

As a result of this pilot project, there was very positive feedback. We took this as an
opportunity to immediately transfer our development and software concept to another
research project: For the manuscript research project “Commentaria in Aristelem Graeca et
Byzantina” we started from scratch and put together a software package similar to the one
for the first pilot project. This project was also subject to the key points mentioned and was
very successful. We moved one step closer to our goal - the digitization of the scientific
editions at our institution. Nevertheless, with the success grew the desire to use ediarum in
many other projects. But we were only able to realize one or two new projects at the same
pace. At the same time, we discovered that we often reused the code already developed for
one project in another. This copy-and-paste approach accelerated the implementation, but
also led to existing errors being duplicated. The operation of several software solutions for
individual projects, including further development and bug fixing, as well as the desire to be
able to implement new projects easily, led to the consideration of restructuring our
development processes. As a result, we no longer programmed for each project alone
(bottom-up), but switched ediarum to a generic, easily adaptable program core.

The concept of ediarum today includes common core components which are used in all
projects. There new features are implemented and bug fixes are made, from which all
projects profit at the same time. Furthermore, there are project-specific extensions, i.e. for
each project there is its own program code that supports the special requirements. The
basis for this approach was a standardization of the data model, which is used by the
projects. This point, one common data model for all projects, cannot be emphasized clearly
enough. This is because all ediarum modules build on the data model in one way or another.
A generic development of ediarum requires a standardized data model. (Project-specific
extensions are of course possible.) 2015 the standardization of the data model took place
first for a certain project type, of which we have many projects (modern German editions).

Based on this, several ediarum modules were developed, which take over individual tasks
within a digital scholarly edition:

 ediarum.DB provides possibilities for project, user and data management
within the XML database.

 ediarum.BASE.edit extends the XML editor with the necessary features to
provide the researchers with a meaningful data input interface.

 ediarum.PDF contains the program code to generate a PDF from the XML files
via the typesetting engine, which follows the layout of common print editions of
scholarly editions.

 ediarum.WEB contains a program library with which a digital presentation for
digital scholarly editions can be created without much effort.

These different modules represent the different layers of a digital edition. They are
extended in the concrete implementation for a project by a project-specific component of
the respective module. Our development workflow today is as follows:

 If there is a new feature request is issued on the part of a project, we check to
what extent this requirement also exists in other projects.

 If it is only a project-specific need, the implementation takes place in the
project-specific extension of ediarum.

 If there are similar requirements in other projects, the generic development
process starts.

 I.e. for the development specification all similar requirements of the different
projects are brought together.

 Sometimes during the implementation the possibility must be provided that the
feature can be adapted project-specifically. This is usually done by integrating
variables in the code that are defined in the project-specific extension.

The generic development approach has enabled us to strengthen and continuously develop
the core components. Furthermore, it is relatively easy for us to set up new projects and
make them ready for work. Finally, the project-specific components, as in the bottom-up
approach, make it possible to implement specific requirements for individual projects.

I come to the conclusion and summarize the advantages and disadvantages, as well as the
path of a change from a bottom-up approach to a generic development: Let us start with the
path towards a move from bottom-up to generic programming. First, experience will be
gained in individual pilot projects. More resources than usual must be made available for
these pilot projects. Three conditions must be met before a changeover to generic
programming can take place: 1. The pilot projects were successful. 2. Further projects are to
be implemented. 3. A common core (such as a common data model and repeating program
code) can be identified. The next step in the changeover is the development of a core
component without project-specific requirements. The implementation of the generic
component for concrete projects follows. Not to forget the migration of the pilot projects to
the generic components. Once all this has been done, the further development and
maintenance of the software can take place in the generic programming.

This approach requires addressing the following challenges: In science, there is only project
financing. Generic development is project-independent and requires additional funds of its
own. Generic development and project-specific development compete with each other. This
means that the completion of important “milestones” for the projects (for evaluations,
publication dates, etc.) leads to a postponement of necessary generic development. When
switching from individual projects to a generic approach, similar but not identical program
code must be brought together. This can be difficult and can mean additional work.
Migrating the pilot projects and other existing projects to the new approach can be very
time consuming. This improves the sustainability of the project, but there are no visible
new features for the project.

Nevertheless, this approach has proved successful for us. Because we see the following
advantages: The first prototype is ready for use more quickly in the bottom-up process.
Because at first, only the requirements of one project have to be considered. The goals are

supported by the strong focus on the projects: The software is strongly oriented to the
concrete needs of the users. The software is not designed too theoretically; the danger of
developing without the real needs is much lower than in generically planned software. Not
too little and not too much is developed. The necessary features are implemented, but no
unnecessary ones. The use of generic core components and project-specific extensions will
achieve a reasonable balance between desired standardization and required project-
specific adaptations. The generic core components significantly simplify the maintenance of
many projects.

