
THE ART OF GIVING AND RECEIVING CODE 
REVIEWS

Dr Alex Hill, Imperial College London
alex.hill@gmail.com
github.com/hillalex

@alexhillphd



1. Defect finding
● In a software-maintenance organization, 55% of one-line 

maintenance changes were in error before code reviews were 
introduced. After reviews were introduced, only 2% of the 
changes were in error.

● In a group of 11 programs developed by the same group of 
people, the first 5 were developed without reviews. The 
remaining 6 were developed with reviews. After all the programs 
were released to production, the first 5 had an average of 4.5 
errors per 100 lines of code. The 6 that had been inspected had 
an average of only 0.82 errors per 100 lines. 

● A study of an organization at AT&T with more than 200 people 
reported a 90% decrease in defects after the organization 
introduced reviews.

Especially useful where 
automated tests are of 
limited use!



2. Learning opportunities

3. Sustainability:

● Increase your bus factor
● Ensure code is readable
● Performance and scalability
● Maintain code standards



Keep changesets small



Don’t review too much too quickly



Ideally

● No silos

● Everyone reviews and 
all code is reviewed

● Pair programming, 
collaborative planning

Practically

● Maximise channels of 
communication

● Everyone is a potential 
reviewer

● Be prepared to review 
unfamiliar code



Help reviewers 
know what they’re 
looking for



The psychology of 
code reviews

Source: http://geekandpoke.typepad.com/geekandpoke/







Automate away



Factual & low conflict

Automate away



Factual & low conflict

Automate away

Collaboration needed



Conflict resolution archetypes

(Dual concerns model)



Conflict resolution archetypes

(Dual concerns model)

Lower defensiveness

Raise confidence



As a reviewer we can...
● Raise code by a grade or 2, no more1

➔ e.g. C → B+, B → A
● Use ‘we’ instead of ‘you’

➔ e.g. “You should have re-used this function” →“We could re-use this 
function” 

➔ b) “Why did you do it this way?” -> “What are the advantages of this 
approach?”

● Ask questions
➔ e.g. “We could re-use this function” → “How does this functionality differ 

from function x?”/ “Can we re-use x here?”

1. Credit for this idea from: https://mtlynch.io/human-code-reviews-2/#aim-to-bring-the-code-up-a-letter-grade-or-two

Lower defensiveness ✔ 
Raise confidence ✔



As a reviewer we can...

Give positive feedback!

● “This is a cool library you found”
● “This refactor makes a lot of sense”
● “This is really easy to read”
● “I didn’t know this function existed, thanks for bringing it to 

my attention!”
● “Thanks for your hard work on this”

Lower defensiveness ✔ 
Raise confidence ✔



As an author we can…

● Practice the ‘as if’ technique
○ How would I respond if I were in my best mood?
○ How would I respond if this code was not mine?
○ How would I respond if the comments were phrased 

differently?
● Say ‘thank you’
● Annotate your review first 
● Solicit feedback with specific questions

Lower defensiveness ✔ 
Raise confidence ✔



Thanks for listening!
alex.hill@gmail.com

@alexhillphd


