THE ART OF GIVING AND RECEIVING CODE
REVIEWS

Dr Alex Hill, Imperial College London
alex.hill@gmail.com

github.com/hillalex
@alexhillphd

B

[R E S I D E MRC g(la:t:;?:rc\)frectious

E

Disease Analysis

Microsoft

Defect finding sy 2

COMPLETE

In a software-maintenance organization, 55% of one-line
maintenance changes were in error before code reviews were
introduced. After reviews were introduced, only 2% of the
changes were in error.

In a group of 11 programs developed by the same group of
people, the first 5 were developed without reviews. The
remaining 6 were developed with reviews. After all the programs
were released to production, the first 5 had an average of 4.5
errors per 100 lines of code. The 6 that had been inspected had
an average of only 0.82 errors per 100 lines.

A study of an organization at AT&T with more than 200 people Especially useful where
reported a 90% decrease in defects after the organization automated tests are of
introduced reviews. limited use!

2. Learning opportunities

3. Sustainability:

Increase your bus factor
Ensure code is readable
Performance and scalability
Maintain code standards

Keep changesets small

Defect Density vs. LOC

x©
S

@
S

2

Defect Density {defects/kLOC)

1000

LOC under review

Source: Cisco review study, https://www.ibm.com/developerworks/rational/library/11-proven-
practices-for-peer-review/

Don’t review too much too quickly

Defect Density vs. Inspection Rate

_ 150

5 ®

S 125

%

g 100 +Reove—5—2w a

g :

= 75 o o

g ° . ®

C 50+%% vy o

] e o

O o ® a

o 25 s o 8% a

D e o ® o

g O .T :r r. hd f. ..Y T ° 1
0 200 400 I 600 800 1000 1200 1400

Review inspection rate (LOC/hour)

Source: Cisco review study, https://www.ibm.com/developerworks/rational/library/11-proven-

practices-for-peer-review/

|deally

e No silos

e Everyone reviews and
all code is reviewed

e Pair programming,
collaborative planning

Practically

e Maximise channels of
communication

e Everyone is a potential
reviewer

e Be prepared to review
unfamiliar code

Help reviewers
know what they're
looking for

xiangli313 wants to merge 6 commits into master from i1ess

(& Conversation 9 -O- Commits 6 Files changed 6

&

xiangli313 commented on 23 Nov 2017 « edited by tinigarske
Report name

"internal-2017-201710gavi-version2-import"

Link to youtrack issue

https:/ivimc.myjetbrains.com/youtrack/issue/VIMC-1033
Instructions for running the report

orderly::orderly_run("internal-2017-201710gavi-version2-import")

Things you would particularly like Tini to look out for

Let me know if there are other things you would particularly like to have for this report.
Things you would particularly like anyone else to look out for

Checklist for reviewer

is the name sensible?
¢! is there only one report in here (or does it need more than one report)
¢ does it run locally on your machine
(L) does it run on science (orderly::orderly_run_remote("name", ref = "origin/iXXX"))

The psychology of
code reviews

HOW TO MAKE A
GOOD CODPE REVIEW

D
l—u |; |
A
L/ l; L
DA

L/ l; ||

RULE 1: TRY TO FIND

AT LEAST SOMETHING
POSITIVE

geek & poke

ﬂr LEAST WE
DON'T NEED TO
OBFUSCATE IT

BEFORE
SHIPPING

Source: http://geekandpoke.typepad.com/geekandpoke/

Alex
@alexhillphd

Hey fellow developers, I'm curious to know,
how often do you feel defensive when
receiving critical comments on a code
review? Please RT! #webdev
#softwaredevelopment #agile #codereview
#webdevelopment

16% Frequently
32% Infrequently

8% Never

25 votes + Final results

5:41 PM - 27 Feb 2018

6 Retweets ﬁ ’ e ’f 9’

) Q il

‘ Add another Tweet

High conflict

Arbitrary preferences

Whitespace

Typo in comment

Low reward <«

A

Over-engineering

Design pattern choices
Readability

Naming choices

Duplicated logic

Rogue console.log

v

» High reward
Security consideration

Missing test

Bug

Wrong behaviour

Low conflict

High conflict
A

Over-engineering

Design pattern choices

%) Readability
©
N’&O‘“a‘

Naming choices

Duplicated logic

Low reward < » High reward
Security consideration

Rogue console.log

Missing test

Bug

Wrong behaviour

v

Low conflict

High conflict

t Over-engineering
Design pattern choices
e a\Na\J Readability
P\\)\‘O(‘\a Naming choices
Duplicated logic
Low reward <« » High reward

Low conflict

High conflict Collaboration needed

Over-engineering

Design pattern choices

Readability

e
N’&O‘“a‘

Naming choices

Duplicated logic

Low reward

» High reward

Low conflict

Conflict resolution archetypes

COMPETING COLLABORATING

COMPROMISING

AVOIDING YIELDING

(Dual concerns model)

Conflict resolution archetypes

COMPETING

Lower defensiveness

COLLABORATING

AVOIDING

COMPROMISING

YIELDING

Raise confidence

(Dual concerns model)

A : Lower defensiveness
S areviewer we can... Raise confidence V

e Raise code by a grade or 2, no more'
- eg9g.C—->B+ B—-A
e Use ‘we’instead of ‘you’
=> e.g. “You should have re-used this function” —“We could re-use this
function”
= b) “Why did you do it this way?” -> “What are the advantages of this
approach?”
e Ask questions
= e.g. “We could re-use this function” — “How does this functionality differ
from function x?”/ “Can we re-use x here?”

1. Credit for this idea from: https://mtlynch.io/human-code-reviews-2/#aim-to-bring-the-code-up-a-letter-grade-or-two

As a reviewer we can...

Give positive feedback!

“This is a cool library you found”
“This refactor makes a lot of sense”
“This is really easy to read”

Lower defensiveness
Raise confidence

“I didn’t know this function existed, thanks for bringing it to

my attention!”
“Thanks for your hard work on this”

As an author we can...

Lower defensiveness
Raise confidence

e Practice the ‘as if technique

o How would | respond if | were in my best mood?
o How would | respond if this code was not mine?
o How would | respond if the comments were phrased

differently?
e Say ‘thank you’
e Annotate your review first
e Solicit feedback with specific questions

Thanks for listening!

alex.hill@gmail.com
@alexhillphd

