Common Workflow Language (CWL)-based software pipeline for *de novo* genome assembly from long- and short-read data

Pasi K. Korhonen

Potsdam, 5th June 2019

Introduction

Short-read draft genome assemblies (< 150 bp)

• Limits the extent of post-genomic analyses

Long-read genome assemblies (< 30 kbp)

- Substantially better assemblies
- Chromosomal contiguity lacking

Scaffolding technologies

- Hi-C and BioNano
- Close to chromosomal level contiguity

AIM is to assemble complete chromosomes from data fragments

called reads that represent nucleotide base pairs A/T/C/G

>Read1 ATTTACGTTACTTTTAAGCCCTTTGGGTTAAATGCATTTTAAGCCTTC

Source for images: Wikimedia Commons

Introduction

Short-read draft genome assemblies (< 150 bp)

• Limits the extent of post-genomic analyses

Long-read genome assemblies (< 30 kbp)

- Substantially better assemblies
- Chromosomal contiguity lacking

Scaffolding technologies

- Hi-C and BioNano
- Close to chromosomal level contiguity

Computational challenges in reproducibility Assembly pipeline Reassembled reference genomes

Source for images: Wikimedia Commons

Computational challenges in reproducibility

Dependency to environment and software dependency management

Dependency 'Hell'

"50% of software can be successfully built or installed"

Computational environment

• "Installing or building SW necessary to run the code in question assumes the ability to *recreate the computational environment* of the original researchers"

Conda package management

- Resolves the dependencies among the software packages
- Easy software installation
- BioConda covers most of the software required for the assembly pipeline
- Creates a virtual environment

Docker

• Almost completely resolves the dependency to environment

Measuring Reproducibility in Computer Systems Research

Christian Collberg collberg@gmail.com Todd Proebsting proebsting@gmail.com Gina Moraila gmoraila@email.arizona.edu Akash Shankaran akashs@email.arizona.edu Zuoming Shi zuomingshi@email.arizona.edu Alex M Warren amwarren@email.arizona.edu

March 21, 2014

Abstract

We describe a study into the willingness of Computer Systems researchers to share their code and data. We find that We also propose a novel *sharing specification* scheme that will require researchers to specify the level of reproducibility that reviewers and readers can assume from a paper either submitted for publication, or published.

An introduction to Docker for reproducible research

Carl Boettiger

Center for Stock Assessment Research, 110 Shaffer Rd, Santa Cruz, CA 95050, USA cboettig(at)gmail.com

BioConda in Conda and in Quay registry

BioConda software packages

Docker images for BioConda software packages

nature **methods**

Correspondence | Published: 02 July 2018

Bioconda: sustainable and comprehensive software distribution for the life sciences

Björn Grüning, Ryan Dale, Andreas Sjödin, Brad A. Chapman, Jillian Rowe, Christopher H. Tomkins-Tinch, Renan Valieris, Johannes Köster ⊠ & The Bioconda Team

Nature Methods 15, 475–476 (2018) Download Citation 🛓

- Implements a virtualised operating system
 - Containers share the Linux kernel with the host machine
- Dockerfile is used to build an image
- DockerHub/Quay can be used for distribution
- Container are executed using root rights
- **Singularity** and **udocker** execute containers in user mode

(Combe et. al, IEEE Cloud Computing, 2016)

Parameter values for software

Documentation of parameter values

 "Incomplete documentation of parameters involved meant as few as 30% of analyses using the popular software structure could be reproduced"

Common Workflow Language (CWL)

Parameter values have to be written into a .yml file in workflow definitions

Measuring Reproducibility in Computer Systems Research

Christian Collberg collberg@gmail.com Todd Proebsting proebsting@gmail.com Gina Moraila gmoraila@email.arizona.edu Akash Shankaran akashs@email.arizona.edu Zuoming Shi zuomingshi@email.arizona.edu Alex M Warren amwarren@email.arizona.edu

March 21, 2014

Abstract

We describe a study into the willingness of Computer Systems researchers to share their code and data. We find that We also propose a novel *sharing specification* scheme that will require researchers to specify the level of reproducibility that reviewers and readers can assume from a paper either submitted for publication, or published.

CWL is a specification to describe a workflow

- Command line is wrapped into a text file
- Parameters are delivered in .yml file
- Workflow definition is separated from tool wrappers
- Has multiple implementations
- Scales to different computing environments

Reference implementation

- Supports automated software installation using BioConda and Docker while workflow progresses
- Has beta support for both udocker and singularity
- Does not support parallel runs in scatter feature

Common Workflow Language, v1.0

Version 2 ✓ Fileset posted on 09.07.2016, 05:26 by Peter Amstutz, Michael R. Crusoe, Nebojša
 Tijanić, Brad Chapman, John Chilton, Michael Heuer, Andrey Kartashov, Dan Leehr, Hervé Ménager, Maya Nedeljkovich, Matt Scales, Stian Soiland-Reyes, Luka Stojanovic

https://www.commonwl.org

Software	Description
cwltool	Reference implementation of CWL
Arvados	Distributed computing platform for data analysis on massive data sets. Using CWL on Arvados
Toil	Toil is a workflow engine entirely written in Python.
CWL- Airflow	Package to run CWL workflows in Apache-Airflow (supported by BioWardrobe Team, CCHMC)
REANA	RE usable ANAlyses
Cromwell	Cromwell workflow engine
CWLEXEC	Apache 2.0 licensed CWL executor for IBM Spectrum LSF, supported by IBM for customers with valid contracts.

Reproducibility

Reproducibility of the results in publications

• More than 70% of researchers have **tried and failed** to reproduce another scientist's experiments, and more than half have **failed to reproduce their own** experiments

NATURE | NEWS FEATURE

1,500 scientists lift the lid on reproducibility Survey sheds light on the 'crisis' rocking research.

Monya Baker

25 May 2016 | Corrected: 28 July 2016

CWL

• Resolves repeatability and reproducibility issues together with BioConda and Docker

GitHub

• Versioned distribution channel for software

Data distribution

• NCBI / EBI

Tool	Software dependencies	Environment	Parameter values	Reproducibility	Repeatable workflow
Conda / BioConda	~	~	×	×	
Docker	×	~	×	~ X	~
CWL	×	×	~	×	

Assembly pipeline

Using BioConda

nature methods

Correspondence | Published: 02 July 2018

- Bioconda: sustainable and comprehensive
 Installing software packages or docker images software distribution for the life sciences
 - Canu v1.6 had a dependency issue
 - Version vs. build: v1.6 build 5
 - Docker images elected
- Docker images run slower than direct installations from BioConda
 - Applies specifically for the program Canu
- BioConda packages do not always run correctly
 - RepeatModeler failed to predict custom repeats

Björn Grüning, Ryan Dale, Andreas Sjödin, Brad A. Chapman, Jillian Rowe, Christopher H. Tomkins-Tinch, Renan Valieris, Johannes Köster ⊠ & The Bioconda Team

Nature Methods 15, 475–476 (2018) | Download Citation 🛓

Using udocker

Computer Physics Communications Volume 232, November 2018, Pages 84-97

Pros

- Does not require root rights
- Easy to debug

Enabling rootless Linux Containers in multi-user environments: The *udocker* tool

Jorge Gomes ^a 은 쯔, Emanuele Bagnaschi ^b, Isabel Campos ^c, Mario David ^a, Luís Alves ^a, João Martins ^a, João Pina ^a, Alvaro López-García ^c, Pablo Orviz ^c

Show more

https://doi.org/10.1016/j.cpc.2018.05.021 Under a Creative Commons license Get rights and content open access

Cons

- Hard to install
 - May require custom installation depending on Linux version
- Inconsistencies in behaviour in comparison to docker
 - Soft links inside the docker images may create issues

Using CWL v1.0

Common Workflow Language, v1.0

Version 2 Fileset posted on 09.07.2016, 05:26 by Peter Amstutz, Michael R. Crusoe, Nebojša
 Tijanić, Brad Chapman, John Chilton, Michael Heuer, Andrey Kartashov, Dan Leehr, Hervé Ménager, Maya Nedeljkovich, Matt Scales, Stian Soiland-Reyes, Luka Stojanovic

Learning curve

No 'if clause' available

• One cannot create branches in workflow

CWL requires read-only access for docker but not for udocker

• May lead to discrepancies in the design of container images

Build number cannot be defined for BioConda packages

Reassembling reference genomes

Quality of genome assembly

- Requirements defined by National Human Genome Research Institute (NIH) (<u>https://www.genome.gov/10000923)</u>
 - The **accuracy** of the assembled nucleotides is at least 99.99% (1 error in 10,000 nucleotides)
 - Decontaminated, ordered contigs (each > 30 kb) form contiguous chromosomes
 - Size of each gap is estimated
 - Each chromosome has at least 95% completeness

Source for images: Wikimedia Commons

Assembly of three model organisms

P. falciparum

- 1987 in Netherlands
- Continuous in-vitro culture
- DNA extracted from haploid developmental phase (red blood cells of host)
- C. elegans
 - 1951 near Bristol, UK
 - Propagated in cultures and distributes to multiple labs internationally
- D. melanogaster
 - Reference assembly from libraries in 1990, 1998, 1999

Reference quality achieved?

P. falciparum		C. elegans		D. melanogaster				
accuracy: yes			accuracy: yes			accuracy: yes		
contiguity: yes			contiguity: no			contiguity: no		
completeness: yes			completeness: yes			completeness: no		
Reference	Assembly		Reference	Assembly		Reference	Assembly	
23,292,622	23,350,454	Genome size (nt)	100,286,401	102,615,360	<mark>Genome size (nt)</mark>	<mark>137,547,960</mark>	129,695,906	
14	14	<mark>Sequence count</mark>	<mark>7</mark>	<mark>54</mark>	Sequence count	7	<mark>61</mark>	
100	99.648	Quast genome fraction (%)	100	96.997	Quast genome fraction (%)	99.644	91.514	
23,292,622	23,276,411	Quast aligned length (nt)	100,286,401	97,651,504	Quast aligned length (nt)	137,057,808	126,646,721	
0	0	Number of Ns (nt)	0	0	Number of Ns (nt)	490385	0	
0	0	Gap count	0	0	Gap count	268	0	
19.34	19.33	GC content (%)	35.44	35.44	GC content (%)	42.08	42.17	
3,291,936	3,294,056	Longest sequence (nt)	20,924,180	11,799,614	Longest sequence (nt)	32,079,331	25,791,812	
100%	99.988%	Accuracy of mismatches and indels in coding regions	100%	99.994%	Accuracy of mismatches and indels in coding regions	100%	99.992%	
100%	99.922%	Accuracy of mismatches and indels in non-coding regions	100%	99.925%	Accuracy of mismatches and indels in non-coding regions	100%	99.951%	
	<pre>y: yes ity: yes ity: yes teness: y Reference 23,292,622 14 100 23,292,622 0 19.34 3,291,936 100% 100%</pre>	y: yesity: yesteness: vesReferenceAssembly23,292,62223,350,454141410099.64823,292,62223,276,41100100019.3419.333,291,9363,294,056100%99.988%100%99.922%	Y: Yesaccity: yesaccity: yesconteness: yesconReferenceAssembly23,292,62223,350,454141410099.648Quast genome fraction (%)23,292,62223,276,41110000000103419.333,291,9363,294,056100%99.988%100%99.922%20%Accuracy of mismatches and indels in non-coding regions	C. elegansy: yesaccuracy: yesity: yescontiguity: noteness: yescompleteness:ReferenceAssemblyenome size (nt)100,286,4011414Sequence count710099.648Quast genome fraction (%)10023,292,62223,276,411Quast aligned length (nt)100,286,40100Number of Ns (nt)000Genome size (nt)100,286,40110099.648Quast genome fraction (%)100103,292,62223,276,411Quast aligned length (nt)100,286,40100Gap count000Gap count0103419.33GC content (%)35.443,291,9363,294,056Longest sequence (nt)20,924,180100%99.988%Accuracy of mismatches and indels in coding regions100%100%99.922%Accuracy of mismatches and indels in non-coding regions100%	C. elegansY: Yesaccuracy: yesity: yescontiguity: noteness: yescompleteness: yesReferenceAssemblyReferenceAssembly23,292,62223,350,454Genome size (nt)100,286,401102,615,3601414Sequence count75410099.648Quast genome fraction (%)10096.99723,292,62223,276,411Quast aligned length (nt)100,286,40197,651,50400Number of Ns (nt)0000Gc content (%)35.4435.443,291,9363,294,056Longest sequence (nt)20,924,18011,799,614100%99.988%Accuracy of mismatches and indels in coding regions100%99.925%	C. elegansD. melanogasy: yesaccuracy: yesaccuracy: yesaccuracy: yesity: yescontiguity: nocontiguity: noteness: yescompleteness: yescompleteness: yesreferenceAssemblyaccuracy of nismatches and indels in non-coding regions100,286,401102,615,360referenceAssemblysequence count754sequence count10099.648Quast genome fraction (%)10096.997Quast genome fraction (%)00Number of Ns (nt)00Number of Ns (nt)00Gap count00Gap count100%99.988%Gc content (%)20,924,18011,799,614Longest sequence (nt)100%99.922%Accuracy of mismatches and indels in non-coding regions100%99.925%Accuracy of mismatches and indels in non-coding regions	C. elegansD. melanogastery: yesaccuracy: yesaccuracy: yesity: yescontiguity: nocontiguity: noteness: yescompleteness: yescompleteness: yesreferenceAssemblyenome size (nt)10099.648genome fraction (%)10099.644Quast genome fraction (%)1000Number of Ns (nt)00Number of Ns (nt)00Gap count19.3419.333,291,9363,294,056100%99.94%100%99.92%100%99.92%100%99.925%100%100%100%99.925%100%100%100%99.925%100%100%100%99.925%100%100%100%99.925%100%100%	

360 / 5,515 = 6.5%

121 / 20,081 = 0.60%

120 / 13,911 = 0.86%

mutated proteins

CWL together with the programs conda and docker can

- create a repeatable pipeline
- reproduce the results
- create a reusable pipeline

CWL together with the programs conda and docker can

- create a repeatable pipeline
- reproduce the results
- create a reusable pipeline

CWL together with the programs conda and docker can

- create a repeatable pipeline
- reproduce the results
- create a reusable pipeline

CWL together with the programs conda and docker can

- create a repeatable pipeline
- reproduce the results
- create a reusable pipeline

The resulting assemblies are close to reference quality

Next steps

- Support Hi-C and BioNano scaffolding technologies
- Support Nanopore long reads
- Integrate workflow to HPC cluster
- Replace udocker with Singularity
- Use CWL to automate genome annotation

GigaScience, 0, 2019, 1–0

doi: 10.1093/gigascience/giz014 Advance Access Publication Date: 0 2019 Technical Note

TECHNICAL NOTE

Common workflow language (CWL)-based software pipeline for *de novo* genome assembly from long- and short-read data

Pasi K. Korhonen D*, Ross S. Hall, Neil D. Young D and Robin B. Gasser D*

Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia

https://www.researchgate.net/publication/331459007_Common_Workflow_Language_CWL-based_software_pipeline_for_de_novo_genome_assembly_from_long-_and_short-read_data

https://github.com/vetscience/Assemblosis

Acknowledgements

Australian Government

National Health and Medical Research Council

Australian Government

Australian Research Council

