

JupyterHub: a Web Based Programming Environment for Teaching and Learning

Debsankha Manik, Jana Lasser

Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077 Göttingen, Germany debsankha.manik@ds.mpg.de,jana.lasser@ds.mpg.de

The Problem

- Need to set up identical programming environment for every user (for e.g. teaching, workshops, data analytics teams).
- Should work on any client machine, independent of OS and hardware.
- Adding packages/libraries should be easy.
- Should plug into existing authentication systems.
- Should be scalable if number of users increase.

The Solution: JupyterHub

- Users need nothing more than a web browser.
- Each user gets identical tools, libraries (specified via a docker image).
- Scales for high number of users using kubernetes.
- Integration into existing authentication system (LDAP, GitHub, GitLab etc).
- Support for more than 20 programming languages.
- Jupyter notebook file format: code, plots, images and markdown/上下Xtext in the same file.

Jupyter Notebook: Code, Plots and Paper in a Single File

JupyterHub: Jupyter Notebooks as a Service

- Each user gets own docker container and notebook server.
- Docker image exactly specifies the tools users have access to.
- Docker volumes: each user can access a shared filesystem.
- Multiple authenticators [4] are supported: Bitbucket, GitHub, GitLab, Google, MediaWiki, Open-Shift etc.
 - Easy to write ones own authenticator.
- Resource allocation: each user can be allocated X GB memory.
- Multiple kernels can be simultaneously available: python, haskell, julia . . .

Our Setup

- A data literacy course open to all departments in University of Göttingen [8].
- 60 participants on first iteration.
- JupyterHub provides the computing environment.
- Deployed by GWDG on a VMWare Cluster.
- Using the docker image jupyter/datascience-notebook, provides many popular tools in python data science ecosystem (numpy, matplotlib, pandas, seaborn ···)
- Each user allocated 4 GB RAM.
- CPU and RAM hotplug supported for dynamic scaling up.

Outlook

JupyterHub at scale

- Scale to large number of users: deploy on a kubernetes [5] cluster.
- Scale to a HPC cluster
 - Integrate with a queuing system [9] like Sun Grid Engine.
 - ipyparallel [6] for easy parallelization.

Feature wishlist

- Collaboratively working on Jupyter notebooks.
- Easier way to version control (maybe jupytext [7]).

References

- [1] jupyter-contrib-nbextensions.readthedocs.io/en/latest
- [2] github.com/jupyter/jupyter/wiki/Jupyter-kernels
- [3] github.com/jupyter/nbconvert
- [4] jupyterhub.readthedocs.io/en/stable/reference/authenticators.html
- [5] z2jh.jupyter.org/en/latest
- [6] github.com/ipython/ipyparallel
- [7] github.com/mwouts/jupytext
- [8] uni-goettingen.de/de/592287.html
- [9] info.gwdg.de/docs/doku.php?id=en:services:application_services:jupyter:hpc